Appell Polynomials and Their Relatives Ii. Boolean Theory
نویسندگان
چکیده
The Appell-type polynomial family corresponding to the simplest non-commutative derivative operator turns out to be connected with the Boolean probability theory, the simplest of the three universal non-commutative probability theories (the other two being free and tensor/classical probability). The basic properties of the Boolean Appell polynomials are described. In particular, their generating function turns out to have a resolvent-type form, just like the generating function for the free Sheffer polynomials. It follows that the Meixner (that is, Sheffer plus orthogonal) polynomial classes, in the Boolean and free theory, coincide. This is true even in the multivariate case. A number of applications of this fact are described, to the Belinschi-Nica and Bercovici-Pata maps, conditional freeness, and the Laha-Lukacs type characterization. A number of properties which hold for the Meixner class in the free and classical cases turn out to hold in general in the Boolean theory. Examples include the behavior of the Jacobi parameters under convolution, the relationship between the Jacobi parameters and cumulants, and an operator model for cumulants. Along the way, we obtain a multivariate version of the Stieltjes continued fraction expansion for the moment generating function of an arbitrary state with monic orthogonal polynomials.
منابع مشابه
Appell Polynomials and Their Relatives Iii. Conditionally Free Theory
ABSTRACT. This paper describes the analogs of the Appell polynomial families in the context of algebras with two states, also called the c-free probability theory, introduced by Bożejko, Speicher, and Leinert. This theory includes as two extreme cases the free and Boolean probability theories. We prove recursions, generating functions, and factorization and martingale properties for these polyn...
متن کاملAppell Polynomials and Their Relatives
This paper summarizes some known results about Appell polynomials and investigates their various analogs. The primary of these are the free Appell polynomials. In the multivariate case, they can be considered as natural analogs of the Appell polynomials when polynomials in noncommuting variables are considered. They also fit well into the framework of free probability. For the free Appell polyn...
متن کاملAlgebraic Theory of Appell Polynomials with Application to General Linear Interpolation Problem
Sequences of polynomials, verifying the (▭), nowadays called Appell polynomials, have been well studied because of their remarkable applications not only in different branches of mathematics ([2], [3]) but also in theoretical physics and chemistry ([4], [5]). In 1936 an initial bibliography was provided by Davis (p. 25[6]). In 1939 Sheffer ([7]) introduced a new class of polynomials which exten...
متن کاملMonogenic pseudo-complex power functions and their applications
The use of a non-commutative algebra in hypercomplex function theory requires a large variety of different representations of polynomials suitably adapted to the solution of different concrete problems. Naturally arises the question of their relationships and the advantages or disadvantages of different types of polynomials. In this sense, the present paper investigates the intrinsic relationsh...
متن کاملOn Appell sequences of polynomials of Bernoulli and Euler type
A construction of new sequences of generalized Bernoulli polynomials of first and second kind is proposed. These sequences share with the classical Bernoulli polynomials many algebraic and number theoretical properties. A class of Euler-type polynomials is also presented. © 2007 Elsevier Inc. All rights reserved.
متن کامل